Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 644
Filtrar
1.
Orphanet J Rare Dis ; 19(1): 171, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641832

RESUMEN

BACKGROUND: Clinical studies on progressive familial intrahepatic cholestasis (PFIC) type 5 caused by mutations in NR1H4 are limited. METHODS: New patients with biallelic NR1H4 variants from our center and all patients from literature were retrospectively analyzed. RESULTS: Three new patients were identified to be carrying five new variants. Liver phenotypes of our patients manifests as low-γ-glutamyl transferase cholestasis, liver failure and related complications. One patient underwent liver transplantation (LT) and survived, and two other patients died without LT. Nine other patients were collected through literature review. Twelve out of 13 patients showed neonatal jaundice, with the median age of onset being 7 days after birth. Reported clinical manifestations included cholestasis (13/13, 100%), elevated AFP (11/11, 100%), coagulopathy (11/11, 100%), hypoglycemia (9/13, 69%), failure to thrive (8/13, 62%), splenomegaly (7/13, 54%), hyperammonemia (7/13, 54%), and hepatomegaly (6/13, 46%). Six of 13 patients received LT at a median age of 6.2 months, and only one patient died of acute infection at one year after LT. Other 7 patients had no LT and died with a median age of 5 months (range 1.2-8). There were 8 patients with homozygous genotype and 5 patients with compound heterozygous genotype. In total, 13 different variants were detected, and 5 out of 12 single or multiple nucleotides variants were located in exon 5. CONCLUSIONS: We identified three newly-diagnosed patients and five novel mutations. NR1H4-related PFIC typically cause progressive disease and early death. LT may be the only lifesaving therapy leading to cure.


Asunto(s)
Colestasis Intrahepática , Colestasis , Humanos , Recién Nacido , Lactante , Estudios Retrospectivos , Colestasis Intrahepática/genética , Colestasis Intrahepática/diagnóstico , Colestasis Intrahepática/terapia , Colestasis/genética
2.
Orphanet J Rare Dis ; 19(1): 157, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610052

RESUMEN

BACKGROUND: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. The correlation between genotype and clinical phenotype still unclear. This study retrospectively analyzed the clinical and pathological characteristics of 23 patients with ABCB4 gene-related cholestatic liver diseases. Next-generation sequencing was used to identify the genetic causes. RESULTS: The 23 included patients (15 children and 8 adults) were diagnosed as progressive familial intrahepatic cholestasis type 3 (PFIC3), drug-induced liver injury (DILI), cirrhosis cholestasis, cirrhosis, and mild liver fibrosis. Nineteen patients underwent liver pathological examination of the liver, exhibiting fibrosis, small bile duct hyperplasia, CK7(+), Cu(+), bile duct deletion, and cirrhosis. Thirty ABCB4 variants were identified, including 18 novel variants. CONCLUSION: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. Biallelic ABCB4 mutation carriers tended to severe PFIC3, which mostly occurs in children; while ABCB4 non-biallelic variants can lead to milder ICP, LACP, DILI or overlapping, mostly in adults. Thus, the ABCB4 genotype has a specific correlation with the phenotype, but there are exceptions. Non-biallelic null mutations can cause severe diseases. The mechanisms underlying this genetic phenotype require further investigation.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Colestasis Intrahepática , Colestasis , Adulto , Niño , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , China , Colestasis/genética , Colestasis Intrahepática/genética , Cirrosis Hepática , Estudios Retrospectivos
3.
J Proteome Res ; 23(4): 1433-1442, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38488493

RESUMEN

MDR3 (multidrug resistance 3) deficiency in humans (MDR2 in mice) causes progressive familial intrahepatic cholestasis type 3 (PFIC3). PFIC3 is a lethal disease characterized by an early onset of intrahepatic cholestasis progressing to liver cirrhosis, a preneoplastic condition, putting individuals at risk of hepatocellular carcinoma (HCC). Hepatocyte-like organoids from MDR2-deficient mice (MDR2KO) were used in this work to study the molecular alterations caused by the deficiency of this transporter. Proteomic analysis by mass spectrometry allowed characterization of 279 proteins that were differentially expressed in MDR2KO compared with wild-type organoids. Functional enrichment analysis indicated alterations in three main cellular functions: (1) interaction with the extracellular matrix, (2) remodeling intermediary metabolism, and (3) cell proliferation and differentiation. The affected cellular processes were validated by orthogonal molecular biology techniques. Our results point to molecular mechanisms associated with PFIC3 that may drive the progression to liver cirrhosis and HCC and suggest proteins and cellular processes that could be targeted for the development of early detection strategies for these severe liver diseases.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Carcinoma Hepatocelular , Colestasis Intrahepática , Colestasis , Neoplasias Hepáticas , Animales , Humanos , Ratones , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Carcinoma Hepatocelular/patología , Colestasis/genética , Hígado/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Noqueados , Proteómica
4.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472011

RESUMEN

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Asunto(s)
Colestasis , ARN Largo no Codificante , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Medios de Cultivo Condicionados/metabolismo , Ratones Noqueados , Colestasis/tratamiento farmacológico , Colestasis/genética , Colestasis/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Hígado/metabolismo
5.
J Pediatr Gastroenterol Nutr ; 78(2): 339-349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374565

RESUMEN

OBJECTIVES: Biallelic variants in the adenosine triphosphate binding cassette subfamily B member 4 (ABCB4) gene which encodes the multidrug resistance 3 protein (MDR3) leads to progressive familiar intrahepatic cholestasis type 3. However, monoallelic variants are increasingly recognized as contributing to liver disease in adults. Our aim was to describe the clinical characteristics of MDR3 heterozygous variants in a large cohort of infants and children with cholestatic liver disease. METHODS: The clinical and genotypic data on pediatric patients seen at King's College Hospital, London, between 2004 and 2022 and found to harbour heterozygous variants in ABCB4 were reviewed. RESULTS: Ninety-two patients amongst 1568 tested were identified with a monoallelic variant (5.9%). The most common presenting problem was conjugated hyperbilirubinemia (n = 46; 50%) followed by cholelithiasis (n = 12; 13%) and cholestatic hepatitis (n = 10; 11%). The median values of liver biochemistry at presentation were: GGT 105 IU/L and total bilirubin 86 µmol/L. Thirty-two genetic variants were identified including 22 missense (69%), 4 deletions (13%), 5 splice site (16%) and 1 termination (3%). At a median follow up of 1 year there was resolution of liver disease. CONCLUSIONS: Rare variants in ABCB4 were found amongst infants and children with cholestatic liver disease. The presenting problems were variable and abnormalities tended to normalize over time. Those with severe mutations could develop liver disease later in life when exposed to further insult and should be counseled appropriately.


Asunto(s)
60572 , Colestasis Intrahepática , Colestasis , Adulto , Niño , Humanos , Lactante , Colestasis/genética , Colestasis Intrahepática/genética , Colestasis Intrahepática/metabolismo , Heterocigoto , Mutación , 60572/genética
7.
Bioorg Chem ; 143: 106979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37995646

RESUMEN

FXR agonistic activity screening was conducted based on natural product resources containing 38 structurally diverse sesquiterpenoids isolated from Xylopia vielana. Among them, 34 undescribed sesquiterpenoids with 5 different skeleton types were first characterized by HRESIMS, NMR data, ECD calculations and X-ray crystallographic analysis. High-content screening for FXR agonistic activity of these compounds demonstrated that 13 compounds could activate FXR. Then molecular docking results suggested that hydrogen bonding and hydrophobic interactions might contribute to the main interaction of active compounds with FXR. The preliminary structure-activity relationships (SARs) of those isolates were also discussed. The most potent compound 27 significantly elevated the transcriptional activity of the FXR target gene BSEP promoter (EC50 = 14.26 µM) by a dual-luciferase reporter assay. Western blotting indicated that compound 27 activated the FXR-associated pathway, thereby upregulating SHP and BSEP expression, and downregulating CYP7A1 and NTCP expression. We further revealed that FXR was the target protein of compound 27 through diverse target validation methods, including CETSA, SIP, and DARTS under the intervention of temperature, organic reagents and protease. Pharmacological in vivo experiments showed that compound 27 effectively ameliorated α-naphthyl isothiocyanate (ANIT)-induced cholestasis in mice, as evidenced by the ameliorative histopathology of the liver and the decrease in biochemical markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA). This work showed a practical strategy for the discovery of new FXR agonists from natural products and provided potential insights for sesquiterpenoids as FXR agonist lead compounds.


Asunto(s)
Colestasis , Sesquiterpenos , Ratones , Animales , Simulación del Acoplamiento Molecular , Hígado/metabolismo , Colestasis/genética , Colestasis/metabolismo , Colestasis/prevención & control , Ácidos y Sales Biliares/metabolismo , Bilirrubina/metabolismo , Sesquiterpenos/farmacología
8.
Clin Genet ; 105(1): 106-108, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37866826

RESUMEN

Four affected individuals from a large consanguineous family were diagnosed with variable phenotypes of cholestasis based on their clinical laboratory and biopsy findings. Cholestasis is a condition when there is not enough bile flow between liver and small intestine. Two of the affected individuals (IV-1, IV-4) died of cholestatic liver at an early age, while the other two patients are alive with chronic liver disease. Clinical exome and Sanger sequencing identified a novel homozygous pathogenic variant (c.482-7_500del) in the patients.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Secuenciación del Exoma , Colestasis/diagnóstico , Colestasis/genética , Hepatopatías/genética , Fenotipo , Cinesinas/genética
9.
Ann Hum Genet ; 88(3): 194-211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38108658

RESUMEN

Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.


Asunto(s)
Colestasis Intrahepática , Colestasis , Lactante , Humanos , Recién Nacido , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Colestasis Intrahepática/diagnóstico , Colestasis Intrahepática/genética , Colestasis/genética , Estudios de Asociación Genética , Mutación , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Lipoproteínas/genética
10.
Hepatol Commun ; 7(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055647

RESUMEN

BACKGROUND: Our objective was to better understand the natural history and disease modifiers of Alpha-1-antitrypsin deficiency (AATD), a common genetic liver disease causing hepatitis and cirrhosis in adults and children. The clinical course is highly variable. Some infants present with neonatal cholestasis, which can resolve spontaneously or progress to cirrhosis; others are well in infancy, only to develop portal hypertension later in childhood. METHODS: The Childhood Liver Disease Research Network has been enrolling AATD participants into longitudinal, observational studies at North American tertiary centers since 2004. We examined the clinical courses of 2 subgroups of participants from the several hundred enrolled; first, those presenting with neonatal cholestasis captured by a unique study, enrolled because of neonatal cholestasis but before specific diagnosis, then followed longitudinally (n=46); second, separately, all participants who progressed to liver transplant (n=119). RESULTS: We found male predominance for neonatal cholestasis in AATD (65% male, p=0.04), an association of neonatal gamma-glutamyl transpeptidase elevation to more severe disease, and a higher rate of neonatal cholestasis progression to portal hypertension than previously reported (41%) occurring at median age of 5 months. Participants with and without preceding neonatal cholestasis were at risk of progression to transplant. Participants who progressed to liver transplant following neonatal cholestasis were significantly younger at transplant than those without neonatal cholestasis (4.1 vs. 7.8 years, p=0.04, overall range 0.3-17 years). Neonatal cholestasis had a negative impact on growth parameters. Coagulopathy and varices were common before transplant, but gastrointestinal bleeding was not. CONCLUSIONS: Patients with AATD and neonatal cholestasis are at risk of early progression to severe liver disease, but the risk of severe disease extends throughout childhood. Careful attention to nutrition and growth is needed.


Asunto(s)
Colestasis , Hipertensión Portal , Deficiencia de alfa 1-Antitripsina , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Deficiencia de alfa 1-Antitripsina/complicaciones , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/epidemiología , Colestasis/genética , Hipertensión Portal/etiología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/epidemiología , Cirrosis Hepática/etiología , Fenotipo , alfa 1-Antitripsina/metabolismo
11.
Sultan Qaboos Univ Med J ; 23(4): 543-546, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38090248

RESUMEN

Progressive familial intrahepatic cholestasis type 4 (PFIC4) is a relatively newly described autosomal recessive disorder caused by biallelic mutations in the gene encoding tight junction protein 2 (TJP2) which is located in chromosome 9q21. PFIC4 is characterised by cholestasis with or without other extrahepatic manifestations. Bleeding tendency due to vitamin k deficiency is a well-known complication of cholestasis. We present a neonate who presented to the Emergency Department at a tertiary care hospital in 2021 with cholestasis and multiple intracranial bleeds. He was found to have severe coagulopathy and his genetic work up revealed a homozygous variant mutation in TJP2 gene causing PFIC4. He had persistent cholestasis that necessitated an internal biliary diversion with some clinical improvement.


Asunto(s)
Colestasis Intrahepática , Colestasis , Masculino , Lactante , Recién Nacido , Humanos , Colestasis/complicaciones , Colestasis/genética , Colestasis Intrahepática/diagnóstico , Colestasis Intrahepática/genética , Colestasis Intrahepática/complicaciones , Mutación
12.
Hepatol Commun ; 7(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902507

RESUMEN

BACKGROUND: Sarcopenia occurs in pediatric chronic liver disease, although the prevalence and contributing factors in genetic intrahepatic cholestasis are not well-described. The objective of this study was to measure muscle mass in school-aged children with genetic intrahepatic cholestasis and assess relationships between sarcopenia, clinical variables, and outcomes. METHODS: Estimated skeletal muscle mass (eSMM) was calculated on dual-energy x-ray absorptiometry obtained in a Childhood Liver Disease Research Network study of children with bile acid synthesis disorders(BASD) alpha-1 antitrypsin deficiency (a1ATd), chronic intrahepatic cholestasis (CIC), and Alagille syndrome (ALGS). Relationships between eSMM, liver disease, and transplant-free survival were assessed. RESULTS: eSMM was calculated in 127 participants (5-18 y): 12 BASD, 41 a1ATd, 33 CIC, and 41 ALGS. eSMM z-score was lower in CIC (-1.6 ± 1.3) and ALGS (-2.1 ± 1.0) than BASD (-0.1 ± 1.1) and a1ATd (-0.5 ± 0.8, p < 0.001). Sarcopenia (defined as eSMM z-score ≤- 2) was present in 33.3% of CIC and 41.5% of ALGS participants. eSMM correlated with bone mineral density in the 4 disease groups (r=0.52-0.55, p < 0.001-0.07), but not serum bile acids, bilirubin, aspartate aminotransferase/platelet ratio index, or clinically evident portal hypertension. Of the 2 patients who died (1 with sarcopenia) and 18 who underwent liver transplant (LT, 4 with sarcopenia), eSMM z-score did not predict transplant-free survival. eSMM z-score correlated with the Physical Pediatric Quality of Life Inventory score (r=0.38-0.53, p = 0.007-0.04) in CIC and a1ATd. CONCLUSION: Severe sarcopenia occurs in some children with ALGS and CIC. The lack of correlation between eSMM and biochemical cholestasis suggests mechanisms beyond cholestasis contribute to sarcopenia. While sarcopenia did not predict transplant-free survival, LT and death were infrequent events. Future studies may define mechanisms of sarcopenia in genetic intrahepatic cholestasis.


Asunto(s)
Enfermedades Óseas Metabólicas , Colestasis Intrahepática , Colestasis , Sarcopenia , Humanos , Niño , Calidad de Vida , Sarcopenia/genética , Colestasis/genética , Enfermedades Óseas Metabólicas/genética , Colestasis Intrahepática/genética
13.
Zhonghua Gan Zang Bing Za Zhi ; 31(9): 901-904, 2023 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-37872084

RESUMEN

With China's outstanding achievements in the prevention and treatment of hepatitis, hereditary cholestasis caused by genetic variants has gradually become an important cause of death or transplantation in children with liver disease. The continuous identification of new pathogenic genes expands the disease spectrum and clinician's understanding of disease. The disease characteristics and clinical manifestations of hereditary cholestasis caused by different gene variants vary, and the severity of diseases caused by the same gene variants and the response to treatment are also significantly different. Therefore, early genetic diagnosis is of great value for improving the clinical management of patients. In terms of treatment, in addition to traditional drugs and surgery, targeted therapy and gene therapy are also gradually moving towards clinical application. Advances in metabolomics, gene editing technology, and structural biology have made it possible to provide personalized and precise treatment of children with hereditary cholestasis in the future; however, this which will put forward higher requirements for on relevant practitioners.


Asunto(s)
Colestasis , Hepatopatías , Niño , Humanos , Colestasis/diagnóstico , Colestasis/genética , Colestasis/terapia
14.
PLoS One ; 18(8): e0290385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37647292

RESUMEN

BACKGROUND: We have developed a mouse model of Parenteral Nutrition Associated Cholestasis (PNAC) in which combining intestinal inflammation and PN infusion results in cholestasis, hepatic macrophage activation, and transcriptional suppression of bile acid and sterol signaling and transport. In the liver, the master circadian gene regulators Bmal/Arntl and Clock drive circadian modulation of hepatic functions, including bile acid synthesis. Once activated, Bmal and Clock are downregulated by several transcription factors including Reverbα (Nr1d1), Dbp (Dbp), Dec1/2 (Bhlhe40/41), Cry1/2 (Cry1/2) and Per1/2 (Per1/2). The aim of this study was to examine the effects of PN on expression of hepatic circadian rhythm (CR) regulatory genes in mice. METHODS: WT, IL1KO or TNFRKO mice were exposed to dextran sulfate sodium (DSS) for 4 days followed by soy-oil lipid emulsion-based PN infusion through a central venous catheter for 14 days (DSS-PN) and the expression of key CR regulatory transcription factors evaluated. Animals were NPO on a 14 hr light-dark cycle and were administered PN continuously over 24 hrs. Mice were sacrificed, and hepatic tissue obtained at 9-10AM (Zeitgeber Z+3/Z+4 hrs). PNAC was defined by increased serum aspartate aminotransferase, alanine aminotransferase, total bile acids, and total bilirubin and the effect of i.p. injection of recombinant IL-1ß (200ng/mouse) or TNFα (200ng/mouse) on CR expression was examined after 4 hrs. RESULTS: In the PNAC model, DSS-PN increased serum biomarkers of hepatic injury (ALT, AST, serum bile acids) which was suppressed in both DSS-PN IL1KO and DSS-PN TNFRKO mice. In WT DSS-PN, mRNA expression of Arntl and Dec1 was suppressed corresponding to increased Nr1d1, Per2, Dbp and Dec2. These effects were ameliorated in both DSS-PN IL1KO and DSS-PN TNFRKO groups. Western analysis of the circadian transcription factor network revealed in WT mice DSS-PN significantly suppressed Reverbα, Bmal, Dbp, Per2 and Mtnr1b. With the exception of Dbp, DSS-PN mediated suppression was ameliorated by both IL1KO and TNFRKO. Intraperitoneal injection of IL-1ß or TNFα into WT mice increased serum AST and ALT and suppressed mRNA expression of Nr1d1, Arntl and Clock and increased Dbp and Per2. CONCLUSIONS: Altered expression of CR-dependent regulatory genes during PNAC accompanies cholestasis and is, in part, due to increased cytokine (IL-1ß and TNFα) production. Evaluation of the effects of modulating CR in PNAC thus deserves further investigation.


Asunto(s)
Traumatismos Abdominales , Colestasis , Animales , Ratones , Factor de Necrosis Tumoral alfa , Factores de Transcripción ARNTL , Genes Reguladores , Colestasis/genética , Nutrición Parenteral , Ácidos y Sales Biliares , ARN Mensajero
15.
Arch Toxicol ; 97(11): 2969-2981, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603094

RESUMEN

Drug-induced intrahepatic cholestasis (DIC) is a main type of hepatic toxicity that is challenging to predict in early drug development stages. Preclinical animal studies often fail to detect DIC in humans. In vitro toxicogenomics assays using human liver cells have become a practical approach to predict human-relevant DIC. The present study was set up to identify transcriptomic signatures of DIC by applying machine learning algorithms to the Open TG-GATEs database. A total of nine DIC compounds and nine non-DIC compounds were selected, and supervised classification algorithms were applied to develop prediction models using differentially expressed features. Feature selection techniques identified 13 genes that achieved optimal prediction performance using logistic regression combined with a sequential backward selection method. The internal validation of the best-performing model showed accuracy of 0.958, sensitivity of 0.941, specificity of 0.978, and F1-score of 0.956. Applying the model to an external validation set resulted in an average prediction accuracy of 0.71. The identified genes were mechanistically linked to the adverse outcome pathway network of DIC, providing insights into cellular and molecular processes during response to chemical toxicity. Our findings provide valuable insights into toxicological responses and enhance the predictive accuracy of DIC prediction, thereby advancing the application of transcriptome profiling in designing new approach methodologies for hazard identification.


Asunto(s)
Rutas de Resultados Adversos , Enfermedad Hepática Inducida por Sustancias y Drogas , Colestasis , Animales , Humanos , Colestasis/inducido químicamente , Colestasis/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Aprendizaje Automático
16.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511516

RESUMEN

Alagille syndrome (ALGS) is a multisystem condition characterized by cholestasis and bile duct paucity on liver biopsy and variable involvement of the heart, skeleton, eyes, kidneys, and face and caused by pathogenic variants in the JAG1 or NOTCH2 gene. The variable expressivity of the clinical phenotype and the lack of genotype-phenotype correlations lead to significant diagnostic difficulties. Here we present an analysis of 18 patients with cholestasis who were diagnosed with ALGS. We used an NGS panel targeting coding exons of 52 genes, including the JAG1 and NOTCH2 genes. Sanger sequencing was used to verify the mutation in the affected individuals and family members. The specific facial phenotype was seen in 16/18 (88.9%). Heart defects were seen in 8/18 (44.4%) patients (pulmonary stenosis in 7/8). Butterfly vertebrae were seen in 5/14 (35.7%) patients. Renal involvement was detected in 2/18 (11.1%) cases-one patient had renal cysts, and one had obstructive hydronephrosis. An ophthalmology examination was performed on 12 children, and only one had posterior embryotoxon (8.3%). A percutaneous liver biopsy was performed in nine cases. Bile duct paucity was detected in six/nine cases (66.7%). Two patients required liver transplantation because of cirrhosis. We identified nine novel variants in the JAG1 gene-eight frameshift variants (c.1619_1622dupGCTA (p.Tyr541X), c.1160delG (p.Gly387fs), c.964dupT (p.C322fs), c.120delG (p.L40fs), c.1984dupG (p.Ala662Glyfs), c.3168_3169delAG (p.R1056Sfs*51), c.2688delG (p.896CysfsTer49), c.164dupG (p.Cys55fs)) and one missense variant, c.2806T > G (p.Cys936Gly). None of the patients presented with NOTCH2 variants. In accordance with the classical criteria, only six patients could meet the diagnostic criteria in our cohort without genetic analysis. Genetic testing is important in the diagnosis of ALGS and can help differentiate it from other types of cholestasis.


Asunto(s)
Síndrome de Alagille , Colestasis , Humanos , Síndrome de Alagille/complicaciones , Síndrome de Alagille/genética , Colestasis/genética , Mutación , Mutación Missense , Fenotipo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo
17.
PLoS One ; 18(7): e0288907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471416

RESUMEN

BACKGROUND AND AIM: Gene defects contribute to the aetiology of intrahepatic cholestasis. We aimed to explore the outcome of whole-exome sequencing (WES) in a cohort of 51 patients with this diagnosis. PATIENTS AND METHODS: Both paediatric (n = 33) and adult (n = 18) patients with cholestatic liver disease of unknown aetiology were eligible. WES was used for reassessment of 34 patients (23 children) without diagnostic genotypes in ABCB11, ATP8B1, ABCB4 or JAG1 demonstrable by previous Sanger sequencing, and for primary assessment of additional 17 patients (10 children). Nasopharyngeal swab mRNA was analysed to address variant pathogenicity in two families. RESULTS: WES revealed biallelic variation in 3 ciliopathy genes (PKHD1, TMEM67 and IFT172) in 4 clinically unrelated index subjects (3 children and 1 adult), heterozygosity for a known variant in PPOX in one adult index subject, and homozygosity for an unreported splice-site variation in F11R in one child. Whereas phenotypes of the index patients with mutated PKHD1, TMEM67, and PPOX corresponded with those elsewhere reported, how F11R variation underlies liver disease remains unclear. Two unrelated patients harboured different novel biallelic variants in IFT172, a gene implicated in short-rib thoracic dysplasia 10 and Bardet-Biedl syndrome 20. One patient, a homozygote for IFT172 rs780205001 c.167A>C p.(Lys56Thr) born to first cousins, had liver disease, interpreted on biopsy aged 4y as glycogen storage disease, followed by adult-onset nephronophthisis at 25y. The other, a compound heterozygote for novel frameshift variant IFT172 NM_015662.3 c.2070del p.(Met690Ilefs*11) and 2 syntenic missense variants IFT172 rs776310391 c.157T>A p.(Phe53Ile) and rs746462745 c.164C>G p.(Thr55Ser), had a severe 8mo cholestatic episode in early infancy, with persisting hyperbilirubinemia and fibrosis on imaging studies at 17y. No patient had skeletal malformations. CONCLUSION: Our findings suggest association of IFT172 variants with non-syndromic cholestatic liver disease.


Asunto(s)
Colestasis Intrahepática , Colestasis , Humanos , Mutación , Secuenciación del Exoma , Colestasis/genética , Genotipo , Colestasis Intrahepática/genética , Colestasis Intrahepática/diagnóstico , Flavoproteínas/genética , Proteínas Mitocondriales/genética , Protoporfirinógeno-Oxidasa/genética , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genética
18.
Am J Med Genet A ; 191(9): 2324-2328, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37272762

RESUMEN

NudC-like protein 2 (NUDCD2) is a 4-exon protein-coding gene at 5q34. The protein appears to act in concert with other genes regulating cell migration and microtubule extension. Early studies in model organisms show associations with LIS1, HERC2, and cohesin subunits via a co-chaperone function with Heat shock protein 90 (Hsp90). It is a candidate gene for human pathology. We present two unrelated patients with biallelic variants in NUDCD2. Their phenotypes comprise similar dysmorphic facies, midline brain hypoplasia, hypothyroidism, pulmonary and aortic valve stenosis, severe dysfunction of the liver and kidneys, profound hypotonia, and early death. The cellular analysis demonstrates the absence of the NUDCD2 protein in fibroblasts of one patient with biallelic loss-of-function variants. The data suggest that NUDCD2 deficiency causes this recognizable syndrome that has features of a ciliopathy with additional complications.


Asunto(s)
Anomalías Múltiples , Colestasis , Insuficiencia Renal , Humanos , Chaperonas Moleculares , Colestasis/complicaciones , Colestasis/diagnóstico , Colestasis/genética , Proteínas HSP90 de Choque Térmico , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Insuficiencia Renal/complicaciones , Insuficiencia Renal/diagnóstico , Insuficiencia Renal/genética
19.
J Pharm Biomed Anal ; 234: 115535, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390604

RESUMEN

BACKGROUND: Cholestasis is a commonly occurring disorder induced by impaired bile flow, for which there is no effective treatment so far. Qingre Lidan decoction (QRLD) is a clinically used herbal compound for the long-term treatment of bile circulation disorders arising from inflammation and obstruction in the gallbladder and bile ducts. The objective of this study was to investigate the protective effect of QRLD on cholestatic liver injury and its possible mechanism. METHODS: α-Naphthyl isothiocyanate (ANIT) was used to induce cholestatic liver injury in rats. Liver histopathology and serum biochemical markers were used to assess QRLD's protective impact. The possible biomarkers and mechanism of the therapeutic benefits of QRLD were investigated using a UHPLC-based Q-Exactive Orbitrap MS / MS untargeted serum metabolomics technique together with 16 S rRNA microbiota profiling. Afterwards, using RT-qPCR as well as Western Blot techniques, the expression of pertinent indicators was determined. RESULTS: The intervention effect of QRLD was stronger at medium and high dosages than at low doses, and it dramatically decreased the levels of serum biochemical markers in cholestatic rats reflecting alterations in liver function and relieving ANIT-induced abnormalities in the liver's histopathology. Serum metabolomics showed that QRLD could affect the metabolic profile of cholestatic rats, mainly related to glycerophospholipid metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, and histidine metabolic pathway. Additionally, analysis of 16 S rRNA gene sequencing indicated that QRLD could moderate ANIT-induced microbiota disorders, particularly Romboutsia, Bifidobacterium, Fusicatenibacter, Prevotella_9, Prevotellaceae_NK3B31_group and Prevotella_1. Other experimental results showed that QRLD significantly upregulated the mRNA and protein expression of PPARα, CYP7A1 and NTCP in the liver, inhibited the expression of p-IκBα, p-p65 and TNFα while increasing the anti-inflammatory factor IL-10, and downregulated the expression of MDA (a peroxidation product) and D-lactic acid (an intestinal barrier indicator) while increasing the expression of SOD and GSH. CONCLUSIONS: QRLD can effectively regulate endogenous metabolites and microbiota disorders in cholestatic rats that are correlated with the attenuation of inflammation and oxidative stress.


Asunto(s)
Colestasis , Hígado , Ratas , Animales , Genes de ARNr , Hígado/metabolismo , Colestasis/tratamiento farmacológico , Colestasis/genética , Colestasis/metabolismo , Metabolómica , Inflamación/patología , Biomarcadores/metabolismo
20.
Saudi J Gastroenterol ; 29(3): 183-190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37313948

RESUMEN

Background: Dubin-Johnson syndrome (DJS) presents during the neonatal period with a phenotype that overlaps with a broad list of causes of neonatal cholestasis (NC), which makes the identification of DJS challenging for clinicians. We conducted a case-controlled study to investigate the utility of urinary coproporphyrins (UCP) I% as a potential diagnostic biomarker. Methods: We reviewed our database of 533 cases of NC and identified 28 neonates with disease-causing variants in ATP-binding cassette-subfamily C member 2 (ABCC2) gene "Cases" (Study period 2008-2019). Another 20 neonates with cholestasis due to non-DJS diagnoses were included as "controls." Both groups underwent UCP analysis to measure CP isomer I percentage (%). Results: Serum alanine aminotransferase (ALT) levels were within the normal range in 26 patients (92%) and mildly elevated in 2 patients. ALT levels were significantly lower in neonates with DJS than in NC from other causes (P < 0.001). The use of normal serum ALT levels to predict DJS among neonates with cholestasis had a sensitivity of 93%, specificity 90%, positive predictive value (PPV) 34%, and negative predictive value (NPV) 99.5%. The median UCPI% was significantly higher in DJS patients [88%, interquartile range (IQR) 1-IQR3, 84.2%-92.7%] than in NC from other causes [67%, (IQR1-IQR3, 61%-71.5%; Confidence interval 0.18-0.28; P< 0.001)]. The use of UCPI% >80% to predict DJS had a sensitivity, specificity, PPV, and NPV of 100%. Conclusion: Based on the results from our study, we propose sequencing of the ABCC2 gene in neonates with normal ALT, presence of cholestasis and UCP1% >80%.


Asunto(s)
Colestasis , Ictericia Idiopática Crónica , Humanos , Alanina Transaminasa , Biomarcadores , Colestasis/diagnóstico , Colestasis/genética , Coproporfirinas , Ictericia Idiopática Crónica/diagnóstico , Ictericia Idiopática Crónica/genética , Recién Nacido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...